Hadoop排序

Hadoop排序

转载来源

Hadoop排序,从大的范围来说有两种排序,一种是按照key排序,一种是按照value排序。如果按照value排序,只需在map函数中将key和value对调,然后在reduce函数中在对调回去。从小范围来说排序又分成部分排序,全局排序,辅助排序,二次排序等。本文介绍如何在Hadoop中实现全局排序。

全局排序,就是说在一个MapReduce程序产生的输出文件中,所有的结果都是按照某个策略进行排序的,例如降序还是升序。MapReduce只能保证一个分区内的数据是key有序的,一个分区对应一个reduce,因此只有一个reduce就保证了数据全局有序,但是这样又不能用到Hadoop集群的优势。

对于多个reduce如何保证数据的全局排序呢?通常的做法是按照key值分区,通过MapReduce的默认分区函数HashPartition将不同范围的key发送到不同的reduce处理,例如一个文件中有key值从1到10000的数据,我们使用两个分区,将1到5000的key发送到partition1,然后由reduce1处理,5001到10000的key发动到partition2然后由reduce2处理,reduce1中的key是按照1到5000的升序排序,reduce2中的key是按照5001到10000的升序排序,这样就保证了整个MapReduce程序的全局排序。但是这样做有两个缺点:

1、当数据量大时会出现OOM。

2、会出现数据倾斜。

Hadoop提供TotalOrderPartitioner类用于实现全局排序的功能,并且解决了OOM和数据倾斜的问题。

TotalOrderPartitioner类提供了数据采样器,对key值进行部分采样,然后按照采样结果寻找key值的最佳分割点,将key值均匀的分配到不同的分区中。

TotalOrderPartitioner 类提供了三个采样器,分别是:

  • SplitSampler 分片采样器,从数据分片中采样数据,该采样器不适合已经排好序的数据
  • RandomSampler随机采样器,按照设置好的采样率从一个数据集中采样
  • IntervalSampler间隔采样机,以固定的间隔从分片中采样数据,对于已经排好序的数据效果非常好。

三个采样器都实现了K[] getSample(InputFormat<K,V> inf, Job job)方法,该方法返回的是K[]数组,数组中存放的是根据采样结果返回的key值,即分隔点,MapRdeuce就是根据K[]数组的长度N生成N-1个分区partition数量,然后按照分割点的范围将对应的数据发送到对应的分区中。

Have a nice day!